Texture Image Segmentation: An Interactive Framework Based on Adaptive Features and Transductive Learning

نویسندگان

  • Shiming Xiang
  • Feiping Nie
  • Changshui Zhang
چکیده

Texture segmentation is a long standing problem in computer vision. In this paper, we propose an interactive framework for texture segmentation. Our framework has two advantages. One is that the user can define the textures to be segmented by labelling a small part of points belonging to them. The other is that the user can further improve the segmentation quality through a few interactive manipulations if necessary. The filters used to extract the features are learned directly from the texture image to be segmented by the topographic independent component analysis. Transductive learning based on spectral graph partition is then used to infer the labels of the unlabelled points. Experiments onmany texture images demonstrate that our approach can achieve good results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transductive Segmentation of Textured Meshes

This paper addresses the problem of segmenting a textured mesh into objects or object classes, consistently with user-supplied seeds. We view this task as transductive learning and use the flexibility of kernel-based weights to incorporate a various number of diverse features. Our method combines a Laplacian graph regularizer that enforces spatial coherence in label propagation and an SVM class...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Unsupervised Segmentation of Natural Images Based on the Adaptive Integration of Colour-Texture Descriptors

This thesis presents the development of a theoretical framework capable of encompassing the colour and texture information in a robust image descriptor that can be applied to the identification of coherent regions in complex natural images. In the suggested approach, the colour and texture features are extracted explicitly on two independent channels and the main emphasis of this work was place...

متن کامل

Interactive Multi-Label Segmentation (web-version)

Interactive image segmentation deals with partitioning an image into multiple pairwisedisjoint regions based on input provided by a human operator. Being interactive means, that an algorithm has to quickly react on user input, which limits the computational complexity of the employed algorithms drastically. Therefore, many interactive segmentation methods represent these regions with simple mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006